Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(Count)
(NTM, 2024)
Line 31: Line 31:
 
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202406341 Hybrid 3D Printing of a Nature-Inspired Flexible Self-Adhesive Biopatch for Multi-Biosignal Sensing] by a team from [https://www.kaust.edu.sa King Abdullah University of Science and Technology (KAUST)]'s [https://cemse.kaust.edu.sa/sama Smart Advanced Memory devices and Applications (SAMA) Lab], [https://energizingcomposites.kaust.edu.sa/cohmas Mechanics of Composites for Energy and Mobility Lab], and [https://bese.kaust.edu.sa/ Biological and Environmental Science and Engineering Division]
 
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202406341 Hybrid 3D Printing of a Nature-Inspired Flexible Self-Adhesive Biopatch for Multi-Biosignal Sensing] by a team from [https://www.kaust.edu.sa King Abdullah University of Science and Technology (KAUST)]'s [https://cemse.kaust.edu.sa/sama Smart Advanced Memory devices and Applications (SAMA) Lab], [https://energizingcomposites.kaust.edu.sa/cohmas Mechanics of Composites for Energy and Mobility Lab], and [https://bese.kaust.edu.sa/ Biological and Environmental Science and Engineering Division]
 
* [https://trace.tennessee.edu/cgi/viewcontent.cgi?article=10200&context=utk_graddiss Engineering of Functional Hybrid Nanocomposites for Renewable Energy Applications via Laser Ablation], a doctoral dissertation submitted to [https://cbe.utk.edu/ The University of Tennessee, Knoxville's Department of Chemical and Biomolecular Engineering ]
 
* [https://trace.tennessee.edu/cgi/viewcontent.cgi?article=10200&context=utk_graddiss Engineering of Functional Hybrid Nanocomposites for Renewable Energy Applications via Laser Ablation], a doctoral dissertation submitted to [https://cbe.utk.edu/ The University of Tennessee, Knoxville's Department of Chemical and Biomolecular Engineering ]
* [https://www.science.org/doi/pdf/10.1126/sciadv.adn7772 Multiscale 3d Printing via Active Nozzle Size and Shape Control] by a team from the [https://engineering.jhu.edu/case/ Department of civil and Systems engineering, Johns hopkins University]
+
* [https://www.science.org/doi/pdf/10.1126/sciadv.adn7772 Multiscale 3d Printing via Active Nozzle Size and Shape Control] by a team from the [https://engineering.jhu.edu/case/ Department of civil and Systems engineering, Johns Hopkins University]
 
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202402432 Versatile Patterning of Liquid Metal via Multiphase 3D Printing] by a team from the [https://msn.engineering.asu.edu/ School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University]
 
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202402432 Versatile Patterning of Liquid Metal via Multiphase 3D Printing] by a team from the [https://msn.engineering.asu.edu/ School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University]
 
* [https://www.nature.com/articles/s41467-024-48353-7 Advancing Interactive Systems With Liquid Crystal Network-based Adaptive Electronics] by a team from [https://www.tue.nl/en/ Eindhoven University of Technology, The Netherlands]
 
* [https://www.nature.com/articles/s41467-024-48353-7 Advancing Interactive Systems With Liquid Crystal Network-based Adaptive Electronics] by a team from [https://www.tue.nl/en/ Eindhoven University of Technology, The Netherlands]

Revision as of 17:44, 8 October 2024

Below is a list of published works citing Hyrel equipment.

Count

567 documents as of 25 September, 2024.

Non-Traditional Manufacturing

Including:

  • Antennas, Sensors, Batteries, Inductors, and Circuits
  • Electro-Spinning
  • Electro-Melt-Spinning
  • Melt Electro-Writing (MEW)
  • Multiphase Direct Ink Writing (MDIW)
  • 4D Printing
  • Shape Memory Polymers
  • Nanostructures
  • Micro-Encapsulated Phase-Changing Materials (MEPCM)
  • Printing with Embedded Fibers
  • And combining two or more additive manufacturing methods in a single build.

NTM, 2024

NTM, 2023

NTM, 2022

NTM, 2021

NTM, 2020

NTM, 2019

NTM, 2018

NTM, 2017

NTM, 2016

NTM, 2015

Unheated or Chilled Reservoir Printing

Also known as Robocasting or DIW (Direct Ink Writing), SEP (Semisolid Extrusion Printing), SSE (Semisolid Extrusion). 3DCP (3D Concrete Printing), or DCC (Digital Concrete Construction).

DIW/SEP/SSE, 2024

DIW/SEP/SSE, 2023

DIW/SEP/SSE, 2022

DIW/SEP/SSE, 2021

DIW/SEP/SSE, 2020

DIW/SEP/SSE, 2019

DIW/SEP/SSE, 2018

DIW/SEP/SSE, 2017

DIW/SEP/SSE, 2016

DIW/SEP/SSE, 2015

DIW/SEP/SSE, 2014

Heated Reservoir Printing

Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).

DPE, HME 2024

DPE, HME 2023

DPE, HME 2022

DPE, HME 2021

DPE, HME 2020

DPE, HME 2019

DPE, HME 2018

DPE, HME 2017

Filament Printing

Also known as FFF (Fused Filament Fabrication) or FDM (Fused Deposition Modeling).

FDM/FFF, 2024

FDM/FFF, 2023

FDM/FFF, 2022

FDM/FFF, 2021

FDM/FFF, 2020

FDM/FFF, 2019

FDM/FFF, 2018

FDM/FFF, 2017

FDM/FFF, 2016